
x, 2 ) ) ) ) #> # A tibble: 6 × 3 #> # Groups: g #> g x y #> #> 1 b x 0.57 y 0.71 #> 2 c x 0.89 y 0.31 #> 3 b x 0.97 y 0.1 #> 4 a x 0.32 y 0.89 #> 5 c x 0.57 y 0.91 #> 6 c x 0.66 y 0. With the development of dplyr or its umbrella package tidyverse, it becomes quite straightforward to perform operations over columns or rows in R. In this case, we are creating a data frame that contains three columns of 10. The output data frame returns all the columns of the data frame where the specified function is applied over every column.
Df % group_by ( g ) gf %>% summarise (n = n ( ) ) #> # A tibble: 3 × 2 #> g n #> #> 1 a 1 #> 2 b 2 #> 3 c 3 gf %>% mutate (id = cur_group_id ( ) ) #> # A tibble: 6 × 4 #> # Groups: g #> g x y id #> #> 1 b 0.575 0.715 2 #> 2 c 0.894 0.313 3 #> 3 b 0.975 0.095 4 2 #> 4 a 0.315 0.889 1 #> 5 c 0.572 0.906 3 #> 6 c 0.663 0.962 3 gf %>% reframe (row = cur_group_rows ( ) ) #> # A tibble: 6 × 2 #> g row #> #> 1 a 4 #> 2 b 1 #> 3 b 3 #> 4 c 2 #> 5 c 5 #> 6 c 6 gf %>% summarise (data = list ( cur_group ( ) ) ) #> # A tibble: 3 × 2 #> g data #> #> 1 a #> 2 b #> 3 c gf %>% mutate ( across ( everything ( ), ~ paste ( cur_column ( ), round (. Convert the column to class 'Date': df1loco <- as.Date (df1loco) Then try any of min (df1loco, na.rm TRUE) 1 '' max (df1loco, na.rm TRUE) 1 '' range (df1loco, na.rm TRUE) 1 '' '' data. Ili.usa.2005 < - Ili.usa > dplyr :: filter ( year 2005 ) > dplyr :: select ( weekstart, weightedili ). Method 1: Using summariseall () method The summariseall method in R is used to affect every column of the data frame.